Skip to main content

PCI-DSS Compliance Guide

Overview

ASCEND provides comprehensive support for Payment Card Industry Data Security Standard (PCI-DSS) compliance when deploying AI agents in cardholder data environments (CDE). This guide covers how ASCEND maps to PCI-DSS 4.0 requirements.

Applicable Versions:

  • PCI-DSS 4.0 (effective March 2024)
  • PCI-DSS 3.2.1 (legacy support)

Control Mapping Summary

PCI-DSS RequirementASCEND FeatureCoverage
3.5 - Protect stored cardholder dataData masking, encryptionFull
6.5 - Secure developmentCode analysis patternsFull
7.1 - Restrict accessPolicy engine, RBACFull
8 - AuthenticationJWT/API key auth, MFAFull
10 - Track and monitorAudit logs, analyticsFull

Requirement 3.5: Protect Stored Account Data

3.5.1: Retention Policies

ASCEND enforces data retention policies for cardholder data processed by AI agents.

How ASCEND Supports This:

# Organization Settings
data_retention:
default_retention_days: 90
cardholder_data_retention_days: 0 # Do not retain
audit_log_retention_years: 7

Evidence Collection:

  • Data lineage tracking via DataLineage table
  • Retention policy enforcement in DataSubjectRightsService
  • Automated purge schedules

3.5.2: Data Masking

AI agents automatically mask cardholder data in logs and responses.

ASCEND Configuration:

{
"data_masking": {
"enabled": true,
"patterns": [
{
"name": "credit_card_number",
"pattern": "\\b(?:\\d{4}[\\s-]?){3}\\d{4}\\b",
"replacement": "****-****-****-{last4}"
},
{
"name": "cvv",
"pattern": "\\b\\d{3,4}\\b",
"replacement": "***"
}
]
}
}

Audit Evidence:

ControlEvidence LocationFrequency
Data masking appliedagent_actions.parametersReal-time
Unmasked data accessaudit_logsReal-time
Masking configurationorg_settingsOn change

Requirement 6.5: Secure Development Practices

6.5.1: Injection Flaws

ASCEND detects and blocks SQL injection, command injection, and code injection in AI-generated code.

Code Analysis Patterns:

Pattern IDPCI-DSS MappingDescription
SQL-0066.5.1SQL injection (tautology)
SQL-0076.5.1UNION-based SQL injection
PY-0016.5.1eval()/exec() injection
PY-0026.5.1Command injection (shell=True)

Configuration:

{
"code_analysis": {
"enabled": true,
"mode": "enforce",
"block_threshold": 90,
"enabled_categories": [
"injection",
"code_execution",
"data_destruction"
]
}
}

6.5.2: Buffer Overflows

Prompt security patterns detect attempts to overflow context windows or inject excessive data.

Pattern IDDescription
PROMPT-011Base64 payload overflow detection
PROMPT-012Unicode smuggling detection

6.5.3: Insecure Cryptographic Storage

ASCEND detects hardcoded credentials and secrets in AI-generated code.

Pattern IDDescription
CRED-001Hardcoded password/secret detection
CRED-002AWS access key detection

Evidence:

SELECT pattern_id, COUNT(*) as detections, MAX(risk_score) as max_risk
FROM code_pattern_audit_log
WHERE category = 'credential_exposure'
AND created_at >= NOW() - INTERVAL '30 days'
GROUP BY pattern_id;

Requirement 7.1: Restrict Access to System Components

7.1.1: Access Control Policies

ASCEND's policy engine enforces least-privilege access for AI agents.

Policy Configuration:

{
"policy_name": "pci_dss_agent_restrictions",
"description": "Restrict agent access to cardholder data",
"rules": [
{
"action": "read_cardholder_data",
"effect": "deny",
"conditions": {
"agent_risk_level": ["high", "critical"],
"data_classification": "pci"
}
},
{
"action": "execute_sql",
"effect": "require_approval",
"conditions": {
"tables": ["credit_cards", "payment_methods", "transactions"]
}
}
]
}

7.1.2: Role-Based Access Control

ASCEND implements RBAC for both users and AI agents.

RolePermissionsCardholder Data Access
agent_readonlyRead non-sensitiveNone
agent_standardRead/WriteMasked only
agent_elevatedElevated operationsRequires approval
agent_adminFull accessRequires MFA + approval

API Endpoint:

GET /api/v1/rbac/roles
Authorization: Bearer {token}

Response:
{
"roles": [
{
"name": "pci_agent",
"permissions": ["read_masked_pan", "process_payment"],
"restrictions": ["no_raw_cardholder_data", "no_cvv_access"]
}
]
}

7.1.3: Access Provisioning

All agent permissions are provisioned through the registration process with full audit trail.

Evidence:

SELECT ra.agent_id, ra.capabilities, ra.max_risk_threshold,
al.action, al.actor_id, al.created_at
FROM registered_agents ra
JOIN audit_logs al ON al.resource_id = ra.agent_id::text
WHERE al.resource_type = 'registered_agent'
ORDER BY al.created_at DESC;

Requirement 8: Identify and Authenticate Access

8.1: User Identification

All API access requires authenticated identity with organization context.

Authentication Methods:

MethodUse CasePCI-DSS Mapping
JWT (RS256)User sessions8.1.1, 8.2.1
API KeysService accounts8.1.1, 8.6.1
MFAElevated access8.4.1

8.2: Authentication Factors

JWT Token Structure:

{
"sub": "user_123",
"organization_id": 456,
"role": "security_admin",
"iat": 1705766400,
"exp": 1705770000,
"jti": "unique-token-id",
"mfa_verified": true
}

8.3: Strong Cryptography

  • JWT signing: RS256 (RSA with SHA-256)
  • API key hashing: SHA-256 with salt
  • Transport: TLS 1.3 required

Configuration:

{
"authentication": {
"jwt_algorithm": "RS256",
"jwt_expiry_seconds": 3600,
"api_key_hash_algorithm": "sha256",
"require_mfa_for_elevated": true,
"session_timeout_minutes": 30
}
}

8.6: Service Account Management

AI agents authenticate via registered API keys with restricted scopes.

POST /api/v1/agents/register
Authorization: Bearer {admin_token}
Content-Type: application/json

{
"agent_id": "payment-processor-agent",
"capabilities": ["process_payment", "read_masked_pan"],
"max_risk_threshold": 70,
"pci_compliant": true
}

Response:
{
"agent_id": "payment-processor-agent",
"api_key": "ask_live_...",
"api_key_id": "aki_...",
"created_at": "2026-01-20T00:00:00Z"
}

Requirement 10: Track and Monitor Access

10.1: Audit Logging

ASCEND maintains immutable audit logs for all system activity.

Logged Events:

Event TypePCI-DSS MappingData Captured
Authentication10.2.1user_id, method, success/fail, IP
Authorization10.2.2action, resource, decision, policy
Data Access10.2.3table, operation, row_count
Configuration10.2.4old_value, new_value, changed_by
Security Events10.2.5pattern_id, risk_score, blocked

Audit Log Schema:

CREATE TABLE audit_logs (
id SERIAL PRIMARY KEY,
organization_id INTEGER NOT NULL,
event_type VARCHAR(100) NOT NULL,
action VARCHAR(100) NOT NULL,
resource_type VARCHAR(100),
resource_id VARCHAR(255),
actor_id VARCHAR(255),
actor_ip INET,
user_agent TEXT,
risk_level VARCHAR(20),
details JSONB,
created_at TIMESTAMPTZ DEFAULT NOW()
);

10.2: Automated Audit Trails

Real-time Logging:

# Every agent action is automatically logged
audit_log = AuditLog(
organization_id=org_id,
event_type="AGENT_ACTION",
action=action_type,
resource_type="agent_action",
resource_id=str(action_id),
actor_id=agent_id,
details={
"tool": tool_name,
"parameters_hash": params_hash,
"risk_score": risk_score,
"policy_decision": decision
}
)

10.3: Audit Log Protection

  • Logs are append-only (no UPDATE/DELETE)
  • Stored in separate database with restricted access
  • Encrypted at rest (AES-256)
  • Retention: 7 years minimum

10.4: Time Synchronization

All timestamps use UTC with timezone awareness:

created_at TIMESTAMPTZ DEFAULT NOW()

10.5: Secure Audit Logs

Access Control:

{
"audit_log_access": {
"roles_allowed": ["security_admin", "compliance_officer"],
"operations_allowed": ["read"],
"require_mfa": true
}
}

Evidence Collection

Daily Evidence Reports

Generate PCI-DSS evidence reports:

POST /api/v1/compliance/reports/pci-dss
Authorization: Bearer {token}
Content-Type: application/json

{
"report_type": "daily_evidence",
"date_range": {
"start": "2026-01-19",
"end": "2026-01-20"
},
"requirements": ["3.5", "6.5", "7.1", "8", "10"]
}

Response:

{
"report_id": "pci-report-20260120",
"generated_at": "2026-01-20T10:00:00Z",
"evidence": {
"requirement_3_5": {
"data_masked_count": 1523,
"retention_policy_active": true,
"cardholder_data_stored": false
},
"requirement_6_5": {
"code_analysis_enabled": true,
"injections_blocked": 12,
"patterns_active": 16
},
"requirement_7_1": {
"policies_enforced": 8,
"access_denied_count": 45,
"least_privilege_verified": true
},
"requirement_8": {
"mfa_enforced": true,
"failed_auth_count": 3,
"api_keys_rotated": 2
},
"requirement_10": {
"audit_logs_count": 15234,
"log_integrity_verified": true,
"retention_days": 2555
}
}
}

Audit Preparation Checklist

RequirementEvidence SourceExport Format
3.5.1Data retention policiesJSON/PDF
3.5.2Masking configurationsJSON
6.5.1Code pattern detectionsCSV/JSON
7.1.1Policy definitionsJSON
7.1.2Role assignmentsCSV
8.1.1Authentication logsCSV/JSON
8.3.1Encryption configurationsJSON
10.1Complete audit trailCSV/JSON

API Reference

Generate Compliance Report

POST /api/v1/compliance/reports
Authorization: Bearer {token}
Content-Type: application/json

{
"framework": "pci-dss",
"version": "4.0",
"scope": ["3.5", "6.5", "7.1", "8", "10"],
"date_range": {
"start": "2026-01-01",
"end": "2026-01-20"
}
}

Export Audit Logs

GET /api/v1/audit-logs/export
Authorization: Bearer {token}
Content-Type: application/json

{
"format": "csv",
"date_range": {
"start": "2026-01-19",
"end": "2026-01-20"
},
"event_types": ["AGENT_ACTION", "AUTHENTICATION", "POLICY_EVALUATION"]
}